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We investigate similarity solutions for the outer part of a zero-pressure-gradient
turbulent boundary layer in the limit of infinite Reynolds number. Previous work
by George (Phil. Trans. R. Soc. vol. 365, 2007 p. 789) has suggested that the only
appropriate velocity scale for the outer region is U1, the free-stream velocity. This
is based on the fact that scaling with U1 leads to a mathematically valid similarity
solution of the momentum equation for the outer region in the asymptotic limit of
infinite Reynolds number. Here we show that the classical scaling using the friction
velocity also leads to a valid similarity solution for the outer flow in this limit.
Therefore on this basis it is not possible to dismiss the friction velocity as a possible
scaling as has been suggested by George (2007) and others. We show that both the
free-stream velocity and the friction velocity are potentially valid scalings according
to this theoretical criterion.

1. Introduction
The turbulent boundary layer developing in a zero streamwise pressure gradient

is a canonical flow case that has been studied for many years. In many respects it
represents the simplest possible case for the study of turbulent boundary layers. Of
particular interest in this flow is how it develops in the streamwise direction and
also the related question of how it behaves at large Reynolds numbers. One reason
for the interest is that many practical flows are characterized by very large values
of the Reynolds number whereas many carefully controlled laboratory experiments
are characterized by much lower Reynolds numbers. A question of some interest,
then, is how to extrapolate results measured in laboratory conditions to much higher
Reynolds numbers? One way to look at this question is in terms of the correct scaling
of the equations. If the correct scaling for the quantities of interest is known, and
furthermore is known to apply for all Reynolds numbers, then a sensible extrapolation
of results is possible.

This issue of scaling was examined quite early on in turbulence research and it was
established by physical arguments and analysis of data that the friction velocity was
the appropriate velocity scale for the outer flow. We shall here refer to this as the
classical scaling, as described in Clauser (1956), Coles & Hirst (1969), Rotta (1962),
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Perry, Marusic & Jones (2002), and Monkewitz, Chauhan & Nagib (2007). Recently,
the arguments leading to this scaling have been questioned by some researchers. One
of these alternatives is explored in George & Castillo (1997, henceforth referred to
as GC97) in which various criticisms of the classical approach are also discussed.
The GC97 theory seeks a similarity solution to the momentum equation for the
outer region, in the limit of infinite Reynolds number. This constraint leads them to
conclude that using the free-stream velocity, U1, as the outer velocity scale permits
such a similarity solution. Further, GC97 suggest a new principle known as the
Asymptotic Invariance Principle (AIP) whereby any function representing boundary
layer solutions for the outer flow must become independent of the Reynolds number
in the limit of Re → ∞. This effectively prescribes that the scalings found in the
asymptotic case will also be valid for finite Reynolds numbers. Consequently, GC97
conclude that U1 is the correct velocity scale for the outer region of boundary layers.
However, it will be shown below that the classical scaling (with the friction velocity)
also satisfies these constraints.

2. The classical scaling
The classical approach to the scaling of the boundary layer has been to consider an

inner region close to the wall where the kinematic viscosity, ν, is important but the
outer length scale (usually taken as the boundary layer thickness, δ) is unimportant.
The effect of the wall shear stress, τ0, can be expressed in terms of a wall shear
velocity Uτ =

√
τ0/ρ where ρ is the density of the fluid. This approach suggests that

in some region close enough to the wall the velocity, U , may be expressed in terms
of the wall distance, y, as

U

Uτ

= g

(
yUτ

ν

)
, (2.1)

where g is some unknown but universal function. This relationship may be determined
in different ways but its validity (for some small region close to the wall) does not
seem to be in dispute. Certainly GC97 accept that this is the appropriate scaling in
the inner region.

In the outer part of the flow the usual assumption is that, at sufficiently high
Reynolds number (strictly only in the limit as Re → ∞), the viscosity can be neglected
and the velocity defect (the difference between the velocity outside the boundary
layer, U1, and the velocity at some point in the layer, U ) then depends only on the
outer length scale and a velocity scale which is chosen as Uτ again since this is a
dynamically important quantity. This may be expressed as

U1 − U

Uτ

= f
(y

δ

)
, (2.2)

where f is some, as yet, unknown function of y/δ. The logarithmic law may be
derived in various ways but it does depend on the fact that the velocity scale for
both the inner and outer flow is the same and equal to Uτ . The scaling presented
above leads to the logarithmic variation of the mean velocity profile in the limit
of infinite Reynolds number. This is an important point since it means that if we
accept the above scaling and wish to examine the behaviour of various terms in the
momentum equation then we can use the logarithmic variation of the mean velocity
profile without further assumption.

The essential difference between this classical scaling and the alternative scaling of
GC97 is that they take the appropriate velocity scaling for the velocity defect instead
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to be the free-stream velocity, U1, i.e. they suggest that the correct defect relation
should be

U1 − U

U1

= F
(y

δ

)
, (2.3)

where the upper-case F has been used to emphasize the fact that this is a different
function from the classical defect law. If this scaling is accepted then there is no
logarithmic variation for the mean velocity profile and other approaches must be
used to consider the forms for the mean velocity profile.

3. Outer flow scaling
Here we revisit the analysis of the outer flow region. Following closely the analysis

of GC97 we start with the momentum equation for a turbulent boundary layer, which
may be written as

U
∂U

∂x
+ V

∂U

∂y
= − 1

ρ

dp

dx
− ∂uv

∂y
+ ν

∂2U

∂y2
− ∂(u2 − v2)

∂x
(3.1)

where x is the streamwise direction, y is the wall-normal direction, U is the mean
streamwise velocity, V is the mean velocity normal to the wall, u and v are the
fluctuating components of the velocities in the x and y direction respectively, and
an overbar denotes a time-averaged quantity. Since we are interested in the zero-
pressure-gradient case then the pressure gradient term may be dropped. GC97 note
that in the outer region, which is dominated by inertia, the effects of viscosity enter
only through the matching to the inner layer. Furthermore, since we are seeking
solutions to (3.1) in the limit of infinite Reynolds number the viscous term can safely
be neglected from the outset; this is in accordance with the approach of GC97. Hence
(3.1) simplifies to

U
∂U

∂x
+ V

∂U

∂y
= −∂uv

∂y
− ∂(u2 − v2)

∂x
. (3.2)

We are seeking similarity solutions to (3.2) of the form

U1 − U

U0

= f
( y

L

)
, (3.3)

− uv

U 2
rs

= frs

( y

L

)
, (3.4)

u2

U 2
r1

= fr1

( y

L

)
, (3.5)

v2

U 2
r2

= fr2

( y

L

)
, (3.6)

where L is some, as yet unspecified, length scale. Similarly there are four unknown
velocity scales involved: U0 for the mean velocity, Urs for the Reynolds shear stress,
Ur1 for the streamwise normal stress and Ur2 for the wall-normal stress. The functions
f , frs , fr1 and fr2 are unknown at this stage except in so far as they are only functions
of y/L. This is the usual approach to finding similarity solutions of equations. Now
the approach is to substitute these expressions into the momentum equation making
use of the mean continuity equation to determine an expression for V . This takes
some careful algebra, especially since L and all the velocity scales can in principle
be functions of the streamwise distance, x. After this substitution the whole equation
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is made non-dimensional by multiplying through by L/U 2
0 . The result after moving

everything to one side of the equation and writing η = y/L is

LU1

U 2
0

dU0

dx
f − U1

U0

dL

dx
ηf ′ − L

U0

dU0

dx
(f 2 − I1f

′) +
dL

dx
I1f

′ +
U 2

rs

U 2
0

f ′
rs +

U 2
r1

U 2
0

dL

dx
ηf ′

r1

− L

U 2
0

dU 2
r1

dx
fr1 − U 2

r2

U 2
0

dL

dx
ηf ′

r2 +
L

U 2
0

dU 2
r2

dx
fr2 = 0 (3.7)

where

I1 =

∫ η

0

f (η) dη. (3.8)

For self-similar solutions to be permitted all coefficients of functions involving η

appearing in (3.7) must scale with each other (or have the same x-dependence, more
precisely) which implies

(
a1 =

LU1

U 2
0

dU0

dx

)
∼

(
a2 =

U1

U0

dL

dx

)
∼

(
a3 =

L

U0

dU0

dx

)
∼

(
a4 =

dL

dx

)
∼

(
a5 =

U 2
rs

U 2
0

)

∼
(

a6 =
U 2

r1

U 2
0

dL

dx

)
∼

(
a7 =

L

U 2
0

dU 2
r1

dx

)
∼

(
a8 =

U 2
r2

U 2
0

dL

dx

)
∼

(
a9 =

L

U 2
0

dU 2
r2

dx

)
.

(3.9)

Note that the case where all coefficients are constants (not necessarily zero) is a valid
solution to (3.9). Further, one or more of the coefficients can be zero as this is just a
special case of being proportional to the others (where the constant of proportionality
is zero). We wish to find the appropriate velocity and length scales such that in the
limit as Re → ∞ (3.9) holds.

Note that we also have one more condition on the solution–that it satisfies the
integral momentum equation for zero pressure gradient.

The obvious length scale for the outer flow is δ, the boundary layer thickness, and
this was chosen by GC97 and is also used in the analysis of the classical scaling
presented later. The definition for δ used in the following is as defined by Perry et al.
(2002), but the conclusions that follow are not dependent on the precise definition.
For example, the Rotta–Clauser thickness could equally be used.

The solution considered by GC97 is the case where U0 = U1. This solution coupled
with the use of the momentum equation gives the following results:

L ∼ δ, (3.10)

Urs ∼ Uτ , (3.11)

Ur1 ∼ Ur2 ∼ U1. (3.12)

Note that the last conditions can be found from the terms relating to the streamwise
variation of the normal stresses. GC97 omitted these terms from their analysis of
the momentum equation but found the same result by considering similarity of the
transport equations for the normal stresses. However when considering similarity for
the transport equation for the Reynolds shear stress GC97 ran into a contradiction
which they accepted could be resolved in one way by allowing that . . . the term
which creates the contradiction must go to zero faster than the other terms so that the
offending condition can be removed from the analysis. (See p. 697 of their paper.)
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In terms of the coefficients

a1 = 0, (3.13)

a3 = 0, (3.14)

a7 = 0, (3.15)

a9 = 0. (3.16)

From this we see that the choice of U1 leads to a valid asymptotic solution as was
shown by GC97. However, GC97 claim that this is the only possible solution, but
this is not so as other possibilities may exist where the coefficients become constants
(possibly zero) only in the infinite Reynolds number limit (as opposed to being
identically zero as in the case of coefficients a1, a3, a7, a9 in the above case).

3.1. The classical solution

The classical solution suggests that the appropriate velocity scale for the defect law
is Uτ (as it is for the inner region) and the length scale is δ (the length is the same
for GC97 as in the classical scaling). This corresponds to U0 =Uτ . The use of Uτ as
the velocity scale for the outer region as well as the inner region† leads also to a
logarithmic law for the velocity profile in the region of overlap. This definite form for
the velocity profile then allows us to examine the behaviour of all the coefficients to
see if a similarity solution is possible in the limit of infinite Reynolds number.

The conditions that must be satisfied for self-similarity become(
a1 =

δU1

U 2
τ

dUτ

dx

)
∼

(
a2 =

U1

Uτ

dδ

dx

)
∼

(
a3 =

δ

Uτ

dUτ

dx

)
∼

(
a4 =

dδ

dx

)
∼

(
a5 =

U 2
rs

U 2
τ

)

∼
(

a6 =
U 2

r1

U 2
τ

dδ

dx

)
∼

(
a7 =

δ

U 2
τ

dU 2
r1

dx

)
∼

(
a8 =

U 2
r2

U 2
τ

dδ

dx

)
∼

(
a9 =

δ

U 2
τ

dU 2
r2

dx

)
.

(3.17)

Consider first the coefficients that do not contain Reynolds stress velocity scales, and
putting S =U1/Uτ and noting that for a ZPG layer (1/Uτ )(dUτ/dx) = (−1/S)(dS/dx),
the requirement on these coefficients then becomes(

a1 = −δ
dS

dx

)
∼

(
a2 = S

dδ

dx

)
∼

(
a3 = − δ

S

dS

dx

)
∼

(
a4 =

dδ

dx

)
.

In order to determine the behaviour of these coefficients, in the limit, knowledge of
the functional form of (3.3) is required. Since in this paper we are interested in testing
the compatibility of a similarity solution with the classical scaling we will make use
of the Coles (1956) ‘law of the wall, law of the wake’ given by

U

Uτ

=
1

κ
ln

yUτ

ν
+ A +

Π

κ
w

(y

δ

)
(3.18)

where A is a constant, w(y/δ) is the Coles (1956) universal wake function and Π

represents the ‘wake’ strength. While Π does depends on the functional form of the
wake function it is nevertheless fixed once a form for w is prescribed. Using (3.18)

† The inner scaling is not discussed here since the analysis of GC97 for the inner region is in
complete agreement with the classical inner scaling.
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the velocity defect profile is given by

U1 − U

Uτ

= − 1

κ
ln

y

δ
+

Π

κ

[
w(1) − w

(y

δ

)]
(3.19)

and hence for velocity defect similarity it is required that Π → constant in the limit
Re → ∞. Note that in making use of (3.18) we are simply testing the consistency of
the classical scaling with a similarity solution.

Evaluating (3.18) at y = δ gives

S =
1

κ
ln

(
δUτ

ν

)
+ C, (3.20)

δ
dS

dx
=

S

(κS + 1)

dδ

dx
, (3.21)

where C is a constant. In order to determine the behaviour of δdS/dx, Sdδ/dx and
dδ/dx in the limit Re → ∞ use is made of the integral momentum equation, given by

dθ

dx
=

1

S2
(3.22)

where θ is the momentum thickness, given by

θ =

∫ ∞

0

U

U1

(
1 − U

U1

)
dy,

and using (3.18) this becomes

θ = δ

(
C1

S
− C2

S2

)
(3.23)

where

C1 =

∫ 1

0

U1 − U

Uτ

dη, (3.24)

C2 =

∫ 1

0

(
U1 − U

Uτ

)2

dη, (3.25)

C1 and C2 being universal constants for the case of velocity defect similarity.
Substituting (3.23) into (3.22) leads to

dδ

dx
=

1 − δ(dS/dx)(2C2/S − C1)

C1S − C2

. (3.26)

Combining (3.21) and (3.26) gives

a1 = −δ
dS

dx
=

−S

κC1S2 − κC2S + C2

, (3.27)

a2 = S
dδ

dx
=

κS2 + S

κC1S2 − κC2S + C2

, (3.28)

a3 = − δ

S

dS

dx
=

−1

κC1S2 − κC2S + C2

, (3.29)

a4 =
dδ

dx
=

κS + 1

κC1S2 − κC2S + C2

. (3.30)

Now the limit Re → ∞ corresponds to δUτ/ν → ∞ and from (3.20) this also
corresponds to S → ∞. Hence the infinite Reynolds number limit for (3.27) to (3.30)
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can be found by taking S → ∞ and taking this limit gives

a1 = −δ
dS

dx
→ 0, a2 = S

dδ

dx
→ 1/C1, a3 = − δ

S

dS

dx
→ 0, a4 =

dδ

dx
→ 0.

Note that in the above the limiting form of a2 and a4 does not depend on the form
of (3.3). However the behaviour of a1 and a3 is dependent on the logarithmic law of
the wall, law of the wake with the condition Π → constant in the infinite-Re limit.
Now consider the coefficients involving Reynolds stress, we have

a5 =
U 2

rs

U 2
τ

, a6 =
U 2

r1

U 2
τ

dδ

dx
, a7 =

δ

U 2
τ

dU 2
r1

dx
, a8 =

U 2
r2

U 2
τ

dδ

dx
, a9 =

δ

U 2
τ

dU 2
r2

dx
.

Since the coefficient a2 has been found to be a non-zero constant it follows that at
least one of the remaining coefficients must also be a non-zero constant to balance
the equation. This is possible if we choose Urs = Uτ which gives a5 = 1. If we also
choose Ur1 =Ur2 =Uτ (which is the usual assumption in the classical method) then in
the limit Re → ∞

a6 = a4 → 0, a7 = 2a3 → 0, a8 = a4 → 0, a9 = 2a3 → 0,

and hence we have shown that the classical solution for the scaling of the zero-
pressure-gradient boundary layer satisfies the equations of motion at infinite Reynolds
number.

It is worth noting here that at finite Reynolds number the normal stress terms
contain Reynolds number corrections as shown by Perry, Henbest & Chong (1986).
This means that they cannot be scaled with only δ and Uτ as is done here. The
reason that this is a valid procedure is that the finite Reynolds number correction
terms are negligible at infinite Reynolds number (see the Appendix) and hence the
simple scaling used here is correct in this limit. The manner in which the asymptotic
limits are taken (for example, increasing the outer length scale or decreasing the inner
length scale) does not change any of outcomes presented here.

It is interesting to note that in this classical solution all terms in the momentum
equation but two drop out and the equation reduces to a balance between the terms
with the coefficients a2 and a5. This amounts to a balance between the Reynolds-
shear-stress gradient (in the wall-normal direction) and the change in streamwise
momentum.

4. Concluding remarks
In this paper we have shown that the classical scaling of the outer part of the

boundary layer leads to an asymptotically valid similarity solution of the momentum
equation. Previously, it has been argued (e.g. George 2007) that without this Uτ

has no theoretical basis as the appropriate velocity scale for the outer region of
boundary layers. Here we have shown that both the free-stream velocity and the
friction velocity are potentially valid scalings according to this theoretical criterion.
It should be emphasized that using a logarithmic law of the wall to determine the
asymptotic behaviour is not an additional assumption in the analysis but follows once
the choice of Uτ as the appropriate velocity scale has been made.

The above result also means that classical scaling may also satisfy the Asymptotic
Invariance Principle of GC97 and therefore (according to this criterion) may also be
a potentially valid velocity scale at finite Reynolds numbers. However, satisfying a
principle does not imply that the principle itself is in any sense fundamental. One
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issue that has not been tackled here (or elsewhere it seems) is the question of why any
boundary layer should satisfy such a principle. There is no fundamental physical law
that states that this should be the case. It is perfectly possible (within the constraints
given by the equations of motion) that the various terms in the momentum equations
could continue to have different x-dependence as the flow develops (even up to
infinite Reynolds number). This type of flow would be called ‘non-equilibrium’ in the
traditional language. It is important to emphasize the point that the AIP is only an
hypothesis of George and coworkers. It should also be noted that the fact that the
classical scaling does satisfy the principle does not, in itself, suggest that the classical
scaling is superior to that of GC97. For this experimental validation is required.

The authors wish to acknowledge the financial assistance of the Australian Research
Council (ARC) and the EPSRC.

Appendix. Reynolds normal stresses
Here we investigate the behaviour of the Reynolds normal stress terms appearing in

(3.2) when Reynolds-number-dependent terms are included in the functional forms of
(3.5) and (3.5). Based on dimensional analysis, in conjunction with the attached eddy
hypothesis of Townsend (1976), Perry et al. (1986) propose the following similarity
laws for the Reynolds normal stresses:

u2

U 2
τ

= B1 − A1 ln
(y

δ

)
− C ′

(
yUτ

ν

)−1/2

, (A 1)

v2

U 2
τ

= A2 − 4

3
C ′

(
yUτ

ν

)−1/2

, (A 2)

where A1, A2, B1 and C ′ are constants (note that here we use the notation C ′ to
avoid confusion with the constant C appearing in (3.20)). Equations are valid in the
turbulent wall region defined as ν/Uτ � y � δ. Differentiating (A 1) and (A 2) with
respect to the streamwise direction yields

δ

U 2
τ

∂(u2 − v2)

∂x
= 2(A2 − B1)

δ

S

dS

dx
+ A1

(
dδ

dx
+

2δ

S

dS

dx
ln

(y

δ

))
− 1

2

δ

S

dS

dx
C ′

(
yUτ

ν

)−1/2

(A 3)
and using (3.29) and (3.30) this can be written as

δ

U 2
τ

∂(u2 − v2)

∂x
= −2a3(A2 − B1) + a4A1 − 2a3A1 ln

(y

δ

)
+

1

2
a3C

′
(

yUτ

ν

)−1/2

. (A 4)

Using (3.20) allows (A 4) to be expressed entirely in terms of the similarity variable
y/δ and doing this gives

δ

U 2
τ

∂(u2 − v2)

∂x
= −2a3(A2 − B1) + a4A1 − 2a3A1 ln

(y

δ

)

+
1

2
[exp(κ(S − C))]−1/2a3C

′
(y

δ

)−1/2

. (A 5)

It has been shown previously in the limit Re → ∞ that a3 → 0 and a4 → 0. Hence for
the forms (A 1) and (A 2) to be compatible with a similarity solution in the limit
Re → ∞ we must investigate the behaviour of the coefficient of the (y/δ)−1/2 function.
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Writing this coefficient out in full we have

a10 =
C ′

2

1√
exp(κ(S − C))(κC1S2 − κC2S + C2)

.

Taking the limit Re → ∞ is equivalent to the limit S → ∞ and it can be shown that for
this limit a10 → 0 and hence (A 1) and (A 2) are compatible with a similarity solution
in the limit Re → ∞.
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